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Abstract The combination of the wide availability of

protein backbone and side-chain NMR chemical shifts with

advances in understanding of their relationship to protein

structure makes these parameters useful for the assessment

of structural-dynamic protein models. A new chemical shift

predictor (PPM) is introduced, which is solely based on

physical–chemical contributions to the chemical shifts for

both the protein backbone and methyl-bearing amino-acid

side chains. To explicitly account for the effects of protein

dynamics on chemical shifts, PPM was directly refined

against 100 ns long molecular dynamics (MD) simulations

of 35 proteins with known experimental NMR chemical

shifts. It is found that the prediction of methyl-proton

chemical shifts by PPM from MD ensembles is improved

over other methods, while backbone Ca, Cb, C0, N, and HN

chemical shifts are predicted at an accuracy comparable to

the latest generation of chemical shift prediction programs.

PPM is particularly suitable for the rapid evaluation of

large protein conformational ensembles on their consis-

tency with experimental NMR data and the possible

improvement of protein force fields from chemical shifts.

Keywords NMR chemical shift prediction � Side-chain

methyl groups � Protein backbone

Introduction

Chemical shifts represent the most accurate and most

ubiquitous NMR information of proteins. For many pro-

teins the resonance assignments, and hence the assigned

chemical shifts, are the sole source of NMR information

readily available via the BioMagResDataBank (BMRB)

(Ulrich et al. 2008), which presently includes chemical

shifts of over 5,000 proteins. In spite of their complex

dependence on protein structure, significant progress has

been made over the years in the prediction of chemical

shifts from protein structures using a variety of strategies

implemented in software, such as Shifts (Xu and Case

2001, 2002), ShiftX?/ShiftX2 (Neal et al. 2003; Han et al.

2011), SPARTA/SPARTA? (Shen and Bax 2007, 2010),

CamShift (Kohlhoff et al. 2009), CH3shift (Sahakyan et al.

2011) and 4DSPOT (Lehtivarjo et al. 2009, 2012). These

programs can be used for the validation and refinement of

protein structures or the determination of average protein

structures from chemical shifts alone (Cavalli et al. 2007;

Shen et al. 2008, 2009; Rosato et al. 2012).

At room temperature the experimental chemical shift of

a given nucleus reflects the Boltzmann-weighted average

of the ‘instantaneous’ chemical shifts of a large number of

conformational substates that interconvert on the ms

timescale or faster. Chemical shift information has been

used to extract site-specific order parameters as a measure

of local dynamics (Berjanskii and Wishart 2005; Korzhnev

et al. 2010). Another application is the quantitative

assessment of conformational protein ensembles generated

by molecular dynamics (MD) computer simulations for the

assessment and comparison of molecular mechanics force

fields (Li and Brüschweiler 2010b), the analysis of the

performance of enhanced sampling algorithms (Markwick

et al. 2010), the comparison of protein structure and
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dynamics in solution and in crystals (Robustelli et al.

2012), and the prediction of rotating frame relaxation data

(Xue et al. 2012).

The quantum-chemical origin of chemical shifts toge-

ther with their multifaceted dependence on electronic and

structural factors makes their accurate prediction a formi-

dable challenge, especially for macromolecules such as

proteins. The traditional approach to chemical shift pre-

diction is through quantum-chemical calculations and

approximate analytical relationships based on physical–

chemical theory, which form the basis for the Shifts pro-

gram (Xu and Case 2001, 2002). As a consequence of the

rapid expansions of both the BMRB (Ulrich et al. 2008)

and PDB (Berman et al. 2000), empirical approaches have

been developed in recent years that parametrize chemical

shift hyper-surfaces that relate protein structures to exper-

imental chemical shifts (Neal et al. 2003; Shen and Bax

2007, 2010; Kohlhoff et al. 2009; Lehtivarjo et al. 2009,

2012; Sahakyan et al. 2011). While most of the work has

focused on chemical shifts of backbone nuclei, amino-acid

side-chain chemical shifts are increasingly used for the

analysis of protein structure and dynamics. The sensitivity

of methyl group chemical shifts on protein structure and

their favorable spectroscopic properties even in very large

proteins and macromolecular complexes (Ruschak et al.

2010) make their accurate prediction a desirable goal.

Several software packages are currently available for the

prediction of methyl side-chain 1H chemical shifts (Xu and

Case 2001, 2002; Neal et al. 2003; Lehtivarjo et al. 2009;

Sahakyan et al. 2011).

Chemical shift prediction programs compute the chem-

ical shift dðkÞ of a nucleus of type k (e.g. Hd1 of Ile) from a

given protein structure represented by the 3 M-dimensional

cartesian vector r, where M is the number of protein

atoms:an ensemble average of the protein mostly

dðkÞpredict ¼
X

j

a
ðkÞ
j f
ðkÞ
j ðrÞ þ dðkÞ0 ð1Þ

where dðkÞ0 is a conformation-independent chemical shift

offset and the functions f
ðkÞ
j ðrÞ describe the geometric

dependence of various contributions j to the chemical shift

stemming from ring currents, electric fields, hydrogen

bonds, magnetic anisotropies, dihedral angles, etc.

Sometimes Eq. (1) also comprises additional empirical

contributions, including artificial neural network based

expressions (Moon and Case 2007; Shen and Bax 2010).

The prefactors a
ðkÞ
j are typically optimized by minimizing

the root-mean-square difference between experimental

chemical shifts dðkÞexp calculated from average X-ray crystal

structures rXray by a linear-least squares fit:

dðkÞexp ¼
X

j

a
ðkÞ
j;Xrayf

ðkÞ
j ðrXrayÞ þ dðkÞ0 ð2Þ

While X-ray crystal coordinates rXray represent the average

structure of the protein in a crystalline environment,

sometimes at cryogenic temperature, the dðkÞexp correspond to

an ensemble average of the protein in solution at ambient

temperatures. Hence, in order to bridge these two different

conditions the fitted a
ðkÞ
j;Xray parameters inherently include a

certain amount of motional averaging. This generally leads

to a reduction of the (absolute) values of a
ðkÞ
j;Xray. When

using the a
ðkÞ
j;Xray parameters for the prediction of chemical

shifts by Eq. (1) from an average protein structure, the

motional averaging encoded in the a
ðkÞ
j;Xray parameters helps

improve prediction accuracy.

By contrast, when calculating chemical shifts from a

conformational ensemble, such as a MD trajectory, the use

of the ‘pre-averaged’ a
ðkÞ
j;Xray values is problematic because

dynamic averaging effects would be counted twice: once in

a
ðkÞ
j;Xray and once by the explicit representation of the

dynamics in the form of multiple conformers. This incon-

sistency can be resolved, in principle, by the use of ‘static’

a
ðkÞ
j parameters when back-calculating chemical shifts from

conformational ensembles. The static a
ðkÞ
j parameters can

be determined from quantum-chemical chemical shift cal-

culations of static protein fragments as originally used in

the Shifts program. Alternatively, the a
ðkÞ
j parameters can

be fitted against an entire conformational ensemble:

dðkÞexp ¼
X

j

a
ðkÞ
j;MD f

ðkÞ
j ðrnÞ

D E

MD
þdðkÞ0 ð3Þ

where the angular brackets indicate averaging over a

canonical ensemble represented by snapshots rn (n = 1,

…,N). It should be noted that since f
ðkÞ
j ðrnÞ

D E

MD
6¼

f
ðkÞ
j ð rnh iMDÞ the fitting parameters obtained from Eqs. (2)

and (3) are not equivalent, a
ðkÞ
j;MD 6¼ a

ðkÞ
j;Xray, even if the

average protein structure during the MD simulation is

identical to the X-ray crystal structure rnh iMD¼ rXray. This

situation is fully analogous to the parametrization of other

NMR observables, such as scalar 3J-couplings via Karplus

relationships and the interpretation of residual dipolar

couplings where the parametrization against average pro-

tein structures using experimental data collected under

physiological conditions leads to the absorbtion of dynamic

properties by the parametrization constants (Brüschweiler

and Case 1994; Meiler et al. 2001; Lindorff-Larsen et al.

2005; Vogeli et al. 2007; Markwick et al. 2009).
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The strategy underlying Eq. (3) was used by Lehtivarjo

et al. (2009) for the parametrization of 1H chemical shifts

by performing 150 ps–1 ns MD simulations with the

resulting chemical shift predictor implemented in the

4DSPOT software. This work was subsequently extended

for the prediction of other backbone chemical shifts from

NMR ensembles by performing short 100 ps MD trajec-

tories of each NMR structural model (Lehtivarjo et al.

2012).

Recent advances in computer hardware have made

molecular dynamics trajectories into the submicrosecond

range a routine task (Klepeis et al. 2009). Moreover, the

development of protein force fields, such as AMBER

ff99SB (Hornak et al. 2006), AMBER ff03 (Duan et al.

2003), and CHARMM CMAP (Buck et al. 2006), stimu-

lated the wider use of experimental NMR data for the

quantitative certification of MD simulations. These include

a wide range of solution NMR data of proteins and pep-

tides, such as residual dipolar couplings (RDCs) (Show-

alter et al. 2007; Lange et al. 2010; Long et al. 2011), scalar

J-couplings (Markwick et al. 2009; Wickstrom et al. 2009;

Lange et al. 2010), spin relaxation order parameters

(Markwick et al. 2007; Showalter and Brüschweiler 2007;

Trbovic et al. 2008) and chemical shifts (Li and

Brüschweiler 2010b; Markwick et al. 2010; Robustelli

et al. 2012). Furthermore, chemical shift data can be used

for the direct improvement of molecular mechanics force

fields of proteins (Li and Brüschweiler 2010a, 2011).

The primary goal of the present work is the development

of a methyl-side chain and protein backbone atom chemical

shift predictor based on Eq. (3). This predictor, termed

PPM, is specifically designed for the validation of large

conformational ensembles and the improvement of protein

force fields from chemical shifts. Hence, both computa-

tional efficiency and accuracy are critical. For this purpose

we have assembled a library of 35 different proteins with

known backbone and side-chain chemical shift assignments

and performed 100 ns molecular dynamics simulations for

each protein starting from medium-to-high resolution

X-ray crystal structures.

Methods

The PDB and BMRB codes of the 35 different proteins

used in this work are listed in Table S1 of the Supporting

Information. Some of these proteins were used in our

previous studies (Li and Brüschweiler 2010a, 2011) or

taken from the RefDB database (Zhang et al. 2003). All

these proteins share the availability of (i) methyl-proton

chemical shifts and (ii) a PDB structure solved by X-ray

crystallography with a resolution better than 2.0 Å, with

one exception, 2RNJ, which was solved by NMR. All

protonation states correspond to pH 7. All MD simulations

were performed using the Gromacs 4 program (Berendsen

et al. 1995; Lindahl et al. 2001; van der Spoel et al. 2005;

Hess et al. 2008). Water molecules were included explicitly

using the TIP3P model (Jorgensen et al. 1983). All bond

lengths involving hydrogen atoms were constrained by the

SETTLE algorithm and a 2 fs time step was used. All van

der Waals interactions were cut off at 10 Å and electro-

static interactions were cut off at 8 Å. The long-range

electrostatic interactions were calculated using the PME

algorithm with 1.2 Å spacing. The final production runs

were at constant temperature and pressure (NPT ensemble)

of 300 K and 1 atm, respectively. All MD simulations were

run for 100 ns and coordinates were saved every 100 ps,

which yielded MD ensembles consisting of 1000 con-

formers for each protein. All MD simulations were stable

with an average root-mean-square-deviation (RMSD)

between the MD ensembles and their X-ray crystal struc-

tures of 1.50 Å.

The recently developed protein force field

ff99SB_uw(g24;CS) (Li and Brüschweiler 2011) was used

for all simulations, in which the backbone u, w dihedral

angle potentials had been improved by the inclusion of

cross terms through the addition of 24 bivariate Gaussian

potential functions of variable depth, width, and tilt angle.

This force field, which reproduces a wide range of exper-

imental NMR parameters of full-length proteins, was fur-

ther enhanced by the addition of dihedral angle corrections

of ILDN side chains (Lindorff-Larsen et al. 2010). The

combination of the NMR-optimized force field

ff99SBnmr1 (Li and Brüschweiler 2010a) with the ILDN

correction has been shown recently to reproduce experi-

mental NMR parameters with remarkably high accuracy

(Long et al. 2011; Beauchamp et al. 2012). A recent

comparison of the performance of 12 of the latest protein

force fields (Beauchamp et al. 2012) showed that for a

benchmark set of 524 protein NMR parameters the

ff99SBnmr1-ILDN force field (Li and Brüschweiler 2010a;

Lindorff-Larsen et al. 2010; Long et al. 2011) has the

highest accuracy among the force fields tested. Since the

backbone potential of ff99SB_uw(g24;CS) was improved

over ff99SBnmr1, ff99SB_uw(g24;CS)?ILDN is expected

to be at least as accurate as ff99SBnmr1?ILDN.

The chemical shift prediction is based on Eq. (3) where

index k denotes each type of chemical shift that was

parameterized. This includes 9 methyl side-chain proton

chemical shifts, namely Hb of Ala, He of Met, Hc2 of Thr,

Hc1 and Hc2 of Val, Hd1 and Hd2 or Leu, Hc2 and Hd of

Ile, and the 5 backbone chemical shifts of the Ca, Cb, C0,
N, and HN atoms of all amino acids except Cys. The

angular brackets in Eq. (3) refer to the ensemble average

over the 1000 MD snapshots per trajectory. All parameters

were determined by a linear least-squares regression over
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all 35 proteins. Besides amino-acid type specific chemical

shift offset values, the following descriptors were included:

ring current effects, magnetic anisotropy effects, electric

field effects, dihedral angle effects, hydrogen bond effects,

and amino-acid sequence effects, such as the characteristic

effect of a proline following the residue of interest (see

Supporting Information for details).

We found that for the methyl proton side-chain chemical

shifts only the first 3 terms, which are described below in

more detail, contribute significantly. Hence, their parame-

trization was based on:

dðkÞexp ¼ dðkÞring�current þ dðkÞmagn�aniso þ dðkÞ0 ð4Þ

using least-squares fitting to determine dðkÞ0 and the pre-

factors a
ðkÞ
j;MD of the terms for dðkÞring�current and dðkÞmagn�aniso

according to Eq. (3). For both the ring current and magnetic

anisotropy contributions, the prefactors a
ðkÞ
j;MD do not depend

on the type of the nucleus k. To monitor and prevent

overfitting, 20 % of the data points were randomly exclu-

ded during fitting and only used for validation. This process

was repeated 1,000 times and the average RMS error of the

fitting set and validation set were compared (see also

Table 1). For the parametrization of backbone chemical

shifts additional terms were included (see Supporting

Information).

Ring current effects dðkÞring�current can arise from 5 dif-

ferent aromatic amino acid rings, namely the ones in Phe,

Tyr, His, and the 5-ring and 6-ring of Trp (Trp-5, Trp-6).

This geometric descriptor is defined as (Haigh and Mallion

1972, 1979; Osapay and Case 1991; Sahakyan et al. 2011)

fring� current ¼
X

p;q

Spqð
1

r3
p

þ 1

r3
q

Þ ð5Þ

where the sum includes all adjacent atom pairs in the ring.

rp and rq are the distances between neighboring ring atoms

p and q to the proton and Sij is the area of the triangle

formed by atom i, atom j and the projection of the proton

on the aromatic ring (denoted as ‘‘o’’). The sign of Sij is

determined whether the vector product toi � tij is parallel

(positive sign) or antiparallel (negative sign) to the ring

normal defined by t12 � t23, where toi is the vector pointing

from o to atom i and and tij as the vector pointing from

atom i to atom j.

Magnetic anisotropy effects dðkÞmagn�aniso were calculated

using the axially symmetry model by Case (Osapay and

Case 1991) following McConnell’s formulation of anisot-

ropy effects of peptide groups (McConnell 1957):

fmagn�aniso ¼
1

r3
ð3 cos2 h� 1Þ ð6Þ

where r is the distance from the proton to the peptide amide

group (containing the OC0N backbone atoms) and h is the

angle between the vector joining the proton to the amide

group and the amide group normal. Following Sahakyan

et al., an analogous treatment was employed for the OCN

side-chain groups of residues Asn and Gln, for the OCO

side-chain groups of Glu and Asp, and for the NCN side-

chain group of Arg.

Results and discussion

We tested the importance of the different terms in Eq. (3)

on the methyl-proton chemical shifts by systematically

excluding individual terms. It turned out that the dihedral

angle terms had no effect on the prediction accuracy.

Although in principle electric field effects can have a

sizeable effect on proton chemical shifts, inclusion of this

term in the parametrization did not improve the perfor-

mance either. The combination of ring current and magnetic

anisotropic effects [Eq. (4)] provided the best methyl-

Table 1 RMSDs (in units of ppm) of methyl-proton chemical shift prediction (values in parentheses are explained in the main text)

Software input PPM CH3Shift Shifts 4DSPOTa

MD
PDB MD PDB MD PDB MD

Ala Hb 0.17 0.15 (0.14) 0.21 (0.18) 0.21 0.18 0.17 (0.16) 0.18

Val Hc1 0.20 0.13 (0.13) 0.19 (0.17) 0.18 0.19 0.15 (0.15) 0.17

Val Hc2 0.18 0.15 (0.14) 0.17 (0.15) 0.18 0.20 0.17 (0.15) 0.18

Leu Hd1 0.23 0.22 (0.13) 0.30 (0.16) 0.35 0.22 0.22 (0.13) 0.24

Leu Hd2 0.18 0.16 (0.13) 0.23 (0.18) 0.23 0.23 0.17 (0.14) 0.19

Ile Hc2 0.21 0.19 (0.17) 0.23 (0.22) 0.23 0.24 0.22 (0.20) 0.19

Ile Hd 0.22 0.22 (0.17) 0.23 (0.17) 0.25 0.23 0.22 (0.18) 0.24

Thr Hc2 0.14 0.13 (0.12) 0.15 (0.13) 0.16 0.18 0.15 (0.14) 0.16

Met He 0.28 0.19 NA NA 0.26 0.20 0.25

a Using the ‘‘MD’’ parameter set
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proton chemical shift prediction. The prefactors

a
ðkÞ
ring�current;MD for the ring current effects from Phe, Tyr,

His, Trp-5 and Trp-6 are 5.817, 4.887, 4.860, 5.566, and

5.961 ppm Å, respectively. These parameters are similar to

previous work (Osapay and Case 1991) (5.455, 4.582,

4.910, 5.673, and 5.564 ppm Å, respectively). The pre-

factors a
ðkÞ
magn�aniso;MD for the magnetic anisotropic effect of

backbone OCN groups, side-chain OCN groups of Asn and

Gln, OCO groups of Glu and Asp, NCN group of Arg are

-4.479, -0.926, -1.692, and -0.408 ppm Å3, respec-

tively. The chemical shift offsets of Hb of Ala, Hc2 of Thr,

He of Met, Hc1 and Hc2 of Val, Hd1 and Hd2 or Leu, Hc2

and Hd of Ile are 1.3876, 1.2671, 2.0763, 1.0064, 0.9611,

0.9102, 0.8890, 0.9976, and 0.8584 ppm, respectively).

However, as pointed out previously (Osapay and Case

1991), the backbone peptide group will also contribute to

the chemical shift offset in a way that makes them hard to

separate. Therefore, the fitted prefactor a
ðkÞ
magn�aniso;MD for

the magnetic anisotropic effect and chemical shift offsets

cannot be directly compared with theoretical estimates.

The previous work by Osapay and Case resulted in a pre-

factor for the backbone OCN groups of -4.37 ppm Å3,

which is similar to the one in this work (note that the

equation and the units in the original work by Osapay and

Case slightly differ from the ones used here). The magnetic

anisotropic effects from side chain groups, which have a

larger fitting uncertainty, have only a minor effect on the

overall fit quality. Since the number of fitting parameters

(18) is small compared to the number of data points (1,544)

used in this work, the fits were very stable, i.e. overfitting

was not an issue. In Table 1, the prediction accuracy for the

9 types of methyl-proton group chemical shifts are listed

for PPM, in comparison with the results obtained from the

chemical shift prediction programs CH3Shift, Shifts, and

4DSPOT (for 4DSPOT, the ‘‘MD’’ parameter set was

selected with other parameter sets affecting the accuracy

only minimally). Correlation coefficients and slopes of the

linear regression analysis for PPM are also provided in

Table 2. Comparison between prediction and experiment is

depicted in Fig. 1. CH3Shift was parametrized using only

experimental chemical shifts that deviated from the aver-

age by less than 2.5 standard deviations, citing possible

experimental errors for the chemical shifts that were

excluded in this way (Sahakyan et al. 2011). While PPM

was parametrized including all chemical shifts, for the

comparison with CH3Shift we used the same subset (the

comparison for all chemical shifts is given in parentheses

in Table 1). Since 4DSPOT was parameterized based on

conformational ensembles, only ensemble-based predic-

tions are reported. Predictions based on both static PDB

structures and MD ensembles are reported for PPM, Shifts,

and CH3Shift. Consistent with our previous observation

(Li and Brüschweiler 2010b), the prediction accuracy of

Shifts improved significantly when ensemble averaging

was employed instead of an average PDB structure. On the

other hand, for CH3Shift, which is based on a knowledge-

based parameterization against static PDB structures, MD-

ensemble averaging showed no improvement.

Overall, PPM provides better agreement with experi-

ment than any of the other programs tested. Despite the fact

that PPM uses only a subset of the structural descriptors

used in CH3Shift, it achieved better prediction accuracy for

all 9 methyl proton sites (note that CH3Shift did not report

chemical shifts of Met He). This fact highlights the

importance of the inclusion of realistic protein dynamics,

as provided by the 100 ns MD trajectories, for the

parametrization of chemical shifts. Despite the improve-

ments of PPM over other predictors, the achieved chemical

shift RMSDs still significantly exceed the experimental

errors, leaving room for further improvement. Chemical

shifts are inherent quantum-chemical quantities and hence

sensitive to electronic effects. However, parameterization

of chemical shifts solely as a function of atomic positions

cannot do full justice to effects arising from the delocalized

nature of the electron density. Hence, it seems likely that

further improvement of the chemical shift prediction

accuracy will require the explicit inclusion of the quantum-

chemical nature of the electronic effects. However, this is

not a straightforward task as the accuracy of quantum-

Table 2 Linear regression

results of PPM

a Chemical shift RMSDs of

PPM when applied to 100 ns

trajectories (3rd column of

Table 1)
b Linear regression results

expressed in terms of slope

(predicted vs. experimental

chemical shifts), intercept, and

Pearson correlation coefficient

Methyl site RMSDa Slopeb Interceptb Correlation coefficientb

Ala Hb 0.15 0.69 0.42 0.85

Val Hc1 0.13 0.66 0.27 0.82

Val Hc2 0.15 0.57 0.33 0.77

Leu Hd1 0.22 0.61 0.28 0.79

Leu Hd2 0.16 0.76 0.16 0.87

Ile Hc2 0.19 0.65 0.26 0.68

Ile Hd 0.22 0.58 0.27 0.78

Thr Hc2 0.13 0.70 0.35 0.85

Met He 0.19 0.67 0.59 0.91
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chemistry based chemical shift calculations of proteins

reported for several backbone nuclei was below the one of

the empirical methods (Vila et al. 2009).

While PPM and 4DSPOT both use conformational

ensembles instead of an average static structure for

chemical shift parameterization and prediction, they follow

a different philosophy. In 4DSPOT parameterization was

done based on either an ensemble generated by a very short

(100 ps) MD run, where MD helps to locally relax the

initial structure and explore the vibrational motions around

it, or an NMR ensemble, where all conformers are treated

with equal weights (Lehtivarjo et al. 2009, 2012). How-

ever, an NMR ensemble generally does not represent a

Boltzmann-weighted ensemble and conformational heter-

ogeneity in some parts of a protein does not necessarily

reflect conformational flexibility, as it can also be caused

by the lack of NMR constraints. By contrast, PPM is based

on the assumption that current molecular dynamics simu-

lations are increasingly realistic in describing protein

dynamics in solution, including methyl side-chain

dynamics (Showalter et al. 2007; Long et al. 2011). On the

one hand, slower timescales sampled by the 100 ns tra-

jectories, probing a larger portion of conformational space,

can be used to better parametrize chemical shifts. This

effect can be seen when limiting the MD trajectories to

shorter durations. For example, the RMSDs of the chemical

shift predictions increase on average by 3 % when the MD

trajectories for training and prediction are limited to only

10 ns lengths. On the other hand, discrepancies between

back-calculated and experimental chemical shifts of

increasingly long MD trajectories will also help uncover

deficiencies in the force fields themselves. Hence, the

approach taken here can be considered as the starting point

of a strategy with goal to iteratively improve the prediction

of chemical shifts, or other biophysical observables, based

on MD trajectories, which in turn help optimize molecular

mechanics force fields until a self-consistent predictor and

force field are obtained. It remains to be seen, however,

whether and how rapidly such an approach will converge.

We extended the application range of PPM to the pre-

diction of backbone Ca, Cb, C0, N and HN atoms using the

same 35 proteins used for the methyl chemical shifts plus

another 12 proteins (12 bottom entries in Table S1). Only

physical–chemical contributions to the chemical shift were

included (see SI for more information). The RMS errors

calculated from both the fitting set and validation set are

listed in Table 2. During fitting, only 80 % of randomly

selected chemical shift data were used, while the remaining

20 % of the data points were used for validation only. This

process was repeated 1000 times with the mean values

reported in Table 3.

To evaluate the PPM approach and compare with other

software, RMS errors obtained for PPM, SPARTA?,

ShiftX, Shifts, CamShift and 4DSPOT are listed in Table

S2 for 9 proteins, which were previously used as a vali-

dation set for SPARTA?. (Two proteins from the original

list are excluded because no medium-to-high resolution

X-ray crystal structures were available.) As for the side-

chain chemical shifts, we find that MD ensemble averaging

of the predictions by Shifts improves the agreement while

the same procedure does not help in the case of

SPARTA?, ShiftX, and CamShift. Because PPM was

parameterized directly against extended MD ensembles, it

Fig. 1 Performance of the

prediction of methyl-proton

chemical shifts by PPM (blue
bars) compared with other

programs. The methyl chemical

shifts of 35 proteins were used

(see text). The red bars indicate

the standard deviations of the

experimental chemical shifts for

reference

Table 3 RMSDs (in units of ppm) of backbone chemical shift

prediction

Software PPM fitting PPM validation

Input MD MD

Ca 1.00 1.06

Cb 1.16 1.23

C0 1.21 1.32

HN 0.49 0.53

N 2.75 2.91
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is not surprising that its application to static X-ray crystal

structures produces RMS errors that are larger than for

some of the other programs.

Overall, PPM predicts chemical shifts from conforma-

tional ensembles with comparable or better accuracy than

other programs, except for SPARTA?. SPARTA? was

trained against a significantly larger set of proteins (580)

than the one used here, as it only uses the X-ray crystal

structures as input. This allowed the inclusion of next-

neighbor amino acid effects (amino acid triples) for

improved prediction accuracy. PPM, on the other hand,

requires an extended MD trajectory, which naturally limits

the number of proteins used for parametrization. Further-

more, SPARTA? uses a significantly more sophisticated

prediction function than PPM. Besides physical–chemical

terms, which also includes the contact model to predict

local dynamics from the X-ray crystal structure (Zhang and

Brüschweiler 2002), SPARTA? uses a neural network. In

this way, SPARTA? captures certain motional effects

without the need of an explicit MD ensemble. This is

beneficial for the prediction of chemical shifts from an

average structure, but it does not translate into an improved

prediction when averaging over a MD ensemble (Table

S2).

Due to the simplicity of the expressions used in Eqs.

(4)–(6) the computational efficiency of PPM is high. The

chemical shift prediction of all backbone and methyl pro-

tons for a protein with 100 amino acids from a trajectory of

1,000 snapshots takes only about 30 s on a single processor

machine using one core.

Concluding remarks

Why is there a need for another chemical shift prediction

program? First, for the proteins tested here, PPM predicts

side-chain proton methyl chemical shifts with better

accuracy than other current programs (Fig. 1). Second,

experimental chemical shifts represent averages over large

conformational ensembles, which makes them important

probes for the assessment of the quality of canonical pro-

tein ensembles generated in silico, such as the ones by

explicit-solvent MD simulations. The model for the

dependence of the chemical shifts on protein coordinates

underlying PPM is solely based on physical–chemical

effects parametrized directly against 100 ns MD ensembles

of 35 different proteins. In this way, the effect of dynamic

averaging during parametrization is limited to the prefac-

tors of the different terms of Eq. (3). This allows the direct

assessment of the effect of chemical shift averaging over an

explicit conformational ensemble. This is in contrast to

machine-learning based predictors where the effect of

ensemble averaging can be hidden. Not surprisingly, PPM

does not predict backbone chemical shifts from single

protein structures as accurately as the latest generation of

chemical shift prediction programs. However, when pro-

vided with an extended ensemble of conformations, the

performance of PPM becomes comparable or better than

for other programs (Table S2), with the exception of

SPARTA?, which performs better for individual X-ray

crystal structures than MD ensembles. As PPM uses ana-

lytical physical-chemistry based expressions for the various

chemical shift contributions, the generally large drop in the

chemical shift RMSD when going from a single structure

to an MD ensemble highlights the significance of protein

dynamics on chemical shift averaging.

PPM should prove particularly useful for the routine

assessment of the quality of Boltzmann-weighted protein

ensembles at atomic detail, especially ones generated by

long MD simulations, and to improve molecular mechanics

force fields from experimental NMR chemical shift data of

full-length proteins. As the length of MD trajectories

continues to grow, the resulting ensembles will help further

optimize chemical shift predictors, such as PPM, and, in

turn, the comparison of predicted with experimental shifts

should guide the further improvement of molecular

mechanics force fields.

Web server availability

The PPM web server is available on http://spin.magnet.

fsu.edu. The PPM program is available upon request.
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